Faculty of Biology

Links and Functions
Language Selection

Breadcrumb Navigation


Protein dynamics - Molecular machines at work München

LMU researchers have used a special fluorescence-based imaging technique to track the shape changes that occur when pore proteins in the cell membrane export molecules into the extracellular medium.


A biological cell can be thought of as a hive, in which proteins play the role of the worker bees. However, proteins are far more versatile and can interact with each other to form molecular machines. In order to understand the mechanisms that underlie their functional versatility, structural biologists have relied primarily on the analysis of their three-dimensional structures following crystallization. However, protein crystals provide an essentially static picture. “So this approach on its own is insufficient,” says Thorben Cordes, Professor of Physical and Synthetic Biology at LMU. “We need to understand the molecular motions and the structural alterations that take place in proteins in the course of their operation.” Cordes and his research group have concentrated on finding ways to visualize protein dynamics. In cooperation with teams at Imperial College London and the University of Groningen, they have now succeeded in characterizing the conformational changes that occur in a class of membrane-integrated transport proteins. The new findings appear in the EMBO Journal.